

NOAA

RESEARCH

ž

ज<u>ौ</u>

 $\aleph$ 

DOD

# Update on NOAA / OAR Climate Activities

Dr. Wayne Higgins, Director OAR Climate Program Office\*

February 26, 2019

\* Special Thanks to Jin Huang (CPO)





### Outline



- What is the role of NOAA? OAR? CPO?
- Key Climate Activities\*
  - Observations
  - Research
  - Modeling & Prediction
  - Applications and information systems
- Looming Gaps
- Interagency Coordination
- Discussion topics and questions for GEWEX

# \* Climate activities span WCRP Scientific Objectives (understanding, predictions, projections, applications)

### What is the Role of NOAA?

### NOAA provides essential environmental information



#### **TOP PRIORITIES FOR 2017-2022**

*Minimize Impacts from Severe Weather (implement Public Law 115-25)* 

### 2

Increase the Sustainable Contributions of Our Fisheries and Oceans

Putting environmental information into the hands of those who need it



OAR's Role

### What is the Role of OAR? Vision: To deliver NOAA's Future

| Observat           | tions Ma       | onitoring Assess                                             | ment Modeling                                    | Forecasts and Products              |  |
|--------------------|----------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------------------|--|
| OAR Priorities     |                |                                                              |                                                  |                                     |  |
| 1<br>Make<br>Forec | Better<br>asts | <b>2</b><br>Detect<br>Changes in<br>Oceans and<br>Atmosphere | <b>3</b><br>Explore the<br>Marine<br>Environment | 4<br>Drive<br>Innovative<br>Science |  |

Mission: Conduct research to understand and predict the Earth's oceans, weather and climate, to advance NOAA science, service and stewardship, and transition the results so they are useful to society.

### NOAA is mandated by Congress to deliver climate information to society



- National Climate Program Act of 1978
- Global Change Research Act of 1990
- International Cooperation in Global Change Research Act of 1990
- National Integrated Drought
  Information Services Act of 2018
- Arctic Research and Policy Act of 1984

### What is the role of OAR's Climate Program Office?



- Integrating Information
- Engaging the Community
- Collaboration



### Climate Activities Span Research to Applications

### Observations & Research

- Global Ocean Observations
- Dataset Development & Analysis
- Process Studies & Field Campaigns
- Experimental Decadal Prediction

### Modeling & Prediction

- Climate Process Teams
- Model Development & Diagnostics
- Subseasonal-to-Seasonal Prediction
- North American Multi Model Ensemble
- Evaluation

### Applications & Information Systems

- Drought and Water
- National Integrated Drought Information System
- o Assessments



#### RESEARCH

#### **APPLICATIONS**

### **Observations:** Global Ocean Observations

- Contributions to major global ocean observing systems (e.g. Argo, Global Drifters, RAMA, PIRATA, Oceansites, ocean gliders, etc.)
- Supports JCOMM infrastructure to deliver ocean data
- Collaborates with partners to advance the global in situ observing system (e.g. TPOS 2020 for ENSO monitoring and prediction).





### **Observations:** Dataset Development and Analyses

**Enhanced Climate Monitoring Program in FY19** to develop / improve climate-quality data sets that contribute to the assessment, monitoring, understanding, and projection of climate.







### **Process Studies & Field Campaigns**

#### **Madden Julian Oscillation**

- DYNAMO field campaign (FY11-12) and research (FY13)
- Climate Process Team Understanding MJO Initiation & Propagation (FY15)
- Year of the Maritime Continent field campaign (FY17)

#### **Ocean Observing System (TPOS 2020)**

• TPOS pre-field modeling studies (FY18)

#### Upper-ocean processes and shallow convection in Tropical Atlantic Ocean

• ATOMIC field campaign (FY19)

#### Wildfire smoke emissions and chemistry

• FIREX/FIREX-AQ field campaign 2016-2020

#### Methane leakages from oil & gas production

- TOP-DOWN field campaign (FY14)
- SONGNEX field campaign (FY15)
- National Academies of Science report (FY18)









### Studies for Experimental Decadal Prediction



- The Atlantic Ocean drives long-term global ocean circulation by cold, salty water sinking at high latitudes
- The North-South movement of heat and currents is collectively called the AMOC (Atlantic Meridional Overturning Circulation)
- The AMOC cycle takes about 60 years.
- Understanding AMOC and its variability is an important step towards an experimental multi-decadal prediction system



**Research:** 



### Model Development: Climate Process Teams

*Climate Process Teams* bring together process experts and climate model developers to improve the simulation of particular processes within the climate model



- Internal-wave driven mixing in global ocean models (2010-2016, NOAA and NSF)
- Cloud parametrization and aerosol indirect effect (2010-16, NOAA and NSF)
- Cloud and boundary layer (2014-15)
- Land, atmosphere and ocean processes (2019, in review, partnering with NASA and DOE)



### Model Development: Model Diagnostics Task Force



#### Focus areas

- Cloud microphysics
- Land-atmosphere coupling
- ENSO teleconnections
- T/ET cyclogenesis
- MJO variability/skill
- Water mass transport
- Diurnal cycle

- Focused on process-oriented evaluation of climate and earth system models
  ✓ Diagnostics to illuminate how processes lead to biases
  - ✓ Diagnostics that provide physical insight
  - ✓ Process-oriented metrics
  - Next-generation model development
  - ✓ CMIP







### Prediction: Subseasonal-to-Seasonal



These activities bolster NOAA support of the *Weather Act of 2017* 

- S2S Task Force
- Operational S2S prediction systems (CFS, NMME)
- Operational S2S forecast products via Climate Test Bed
- Subseasonal Experiment (SubX)



### Prediction: North American Multi Model Ensemble

Goal: Improve subseasonal to interannual predictions based on an ensemble of major US and Canada models

- 2011: Experimental system initiated (CTB)
- 2011-present: Supported by CPO with contributions from NSF, DOE and NASA.
- 2011-present: Evaluated real-time forecast reliability based on 30-year hindcasts
- 2015: NMME **Seasonal** Forecast System becomes operational at NCEP
- Current: The most comprehensive seasonal prediction dataset for research and applications
- <u>Future</u>: The discussion on sustaining NMME beyond 2018 is ongoing.

#### Comparison of Skill: NMME vs CFSv2





# **Evaluation:** CMIP Models

### FY11-14:

- Evaluated simulations of 20<sup>th</sup> century climate and uncertainties in long-term predictions and projection of 21<sup>st</sup> century climate over North America
- Developed process-oriented metrics for the evaluation of climate models.

### FY18-20:

 Address key issues in the representation of Earth system processes in CMIP6-era models to improve model fidelity

### FY19

 21<sup>st</sup> Century integrated US climate predictions and projections.



#### MAPP CMIP5 Task Force



# Applications: Drought and Water

#### MAPP Drought Task Force partnership with NIDIS

#### Drought monitoring

- Probabilistic monitoring tools;
- Objective methodologies to advance the US Drought Monitor)

#### Land data assimilation

- NLDAS development
- Assimilation of new data

#### Drought predictability studies

#### Land and hydrologic modeling and prediction

- NOAH land model development
- Hydrologic modeling and uncertainty quantification

#### Drought prediction systems

- Probabilistic drought prediction supported by NMME
- Empirical methodologies

of the 2011-14 California Drought NOAA Drought Task Force 2016 search to Advance National Drought Monitoring and Prediction Canabilitie An Interpretation of the Origins of the 2012 Central **Great Plains Drought** Assessment Report NOAA Drought Task Force Narrative Team Lead: Martin Hoerling Co-Leads: Siegfried Schubert & Kingtse Mo 20 March 2013

Causes and Predictability



### Information Systems: NIDIS Regional Drought Early Warning Systems



National Integrated Drought Information System

- Drought early warning and preparedness
- State drought planning
- RISA Networks
- Engagement (e.g. Tribal)







### Fourth National Climate Assessment, Vol II — Impacts, Risks, and Adaptation in the United States



# A Looming Gap

There have been several recent meetings and white papers at NOAA and in the U.S. focused on how a decadal prediction system involving hi-resolution coupled models could be built using state-of-the-art dynamical-core and physics.

- The real sticking point is lack of dedicated HPC
- U.S. should focus on dedicated HPC for doing the seasonal-todecadal (S2D) predictions in support of a "seamless" modeling system from weather to decadal scales.

# **Interagency Coordination**

- U.S. Global Change Research Program (e.g. National Climate Assessment; Climate Modeling Summits; Integrated Water Cycle Group)
- Process Studies (e.g. DYNAMO, FIREX, ATOMIC)
- Prediction (e.g. North American Multi-Model Ensemble)

# Looking Ahead: 2020-2030

1) **Interannual-to-decadal predictability and prediction** studies to address key priorities (e.g. make better forecasts; explore marine environment; drive innovative science)

2) Coordinated observation and modeling approaches to improve understanding and model representations of Earth system processes and interactions (e.g. raise the visibility of the science; integrate across capabilities; develop strategic partnerships)

# **Questions for GEWEX**

There continues to be good alignment between GEWEX priorities and NOAA's climate mission. NOAA would benefit from additional clarity on the following:

- What are the future GEWEX strategic priorities? Are they unique to GEWEX?
- How can NOAA (and other US agencies) benefit from GEWEX activities and vice versa?
- How can we better establish joint long-term objectives?
- What's already working well? What can be improved?

### **Extras**

# **Process Studies:** Atmospheric Composition

# Processes that transform both natural and manmade Nitrogen compounds





#### Earth Science Climate Process Team:

focuses on reactive nitrogen biogeochemical cycling (atmosphere-land interactions) in the GFDL Earth System Model.

FIREX field campaign projects focused on nitrogen containing aerosols.

Collaboration with ESRL Chemical Sciences Division, NASA, EPA, FS, BLM

### **Process Studies:** Field Campaign To Understand MJO

DYNAMO (Dynamics of the Madden-Julian Oscillation) field campaign research competitions.

- FY11 Obs & process understanding
- FY13 Analysis & modeling
- FY15 Climate Process Teams to improve representation of MJO and S2S prediction skill in NCEP and GFDL models.
- FY17 Joint ONR and NASA campaign to understand the role of the maritime continent in MJO propagation.





