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Why does understanding plant response to drought
matter?

Darcy's law predicts widespread forest mortality
under climate warming

10}

Nathan G. McDowell™ and Craig D. Allen?

Drought and he t nduced tree mo t lity is accelerating in  mechanisms, on canopy-scale water conductance G (molm~ leaf
many forest biomes as a con seq of a wa mglmt area s ')

“Drought and heat-induced tree
mortality is accelerating in many forest

Change in W (g C per kg H,O hPa)

Mean slope = 0.96 (+0.17) g C per kg H,0 hPa yr

biomes as a consequence Of a Warming (z ? ’3 adapted from Keenan et al., Nature, 2013
° ° ° . ® « 1990 2000 2010

climate, resulting in a threat to global n"(f\ RN

forests unlike any in recorded history.” { D

)

\ L



Representation
Of d rOught in Some Evergreen Broadleaf Forest -

LSMs
precip
[mm.week1]

& ‘Not stressed | g
- o
ET range o~ g
>3 mm.day™ b :
T~ \_‘ l ’H g
o {Too stressed & 5

Jan 04

Instantaneous recovery



Soil = Not stressed
moisture 1 ? Rapid critical
L ee 8 stress

Stress e |

. Grasses , + omonoee |
factor with =%
scarce
empirical .
support

Trees | EﬁEE&P g

1 |
0.0 0 i5 o

Soil Moisture ¢ (m® m~2)



not stressed

Soil

moisture f

stress ; B = 5=

factor with i

scarce g

empirical 3

support

0- 4ressed e.g. JULES, CABLE, JSBACH...
Bup Osat

soil moisture 8 [m3.m~3]



Implications for the future

Land surface models cannot reliably predict...

* the impact of drought on vegetation

* plant mortality

» vegetation feedback on the atmosphere
* the sign of future drought




Alternative approaches

No "ol <7 N
Low
Transpiration draws
water from the leaf.
-
(e
‘ 'Y Q
bt g
TT | | 3
| - — Q0]
| “ J = 'S
— 9 _g
‘ 1 ! : (@]
718 !i ! ol | §
1 | < =~ 153l I (- Q
Cohesion and adhesion &
draw water up the xylem. ‘;"
A
High[ |

Negative water potential
draws water into the root.



| "% ©® 2% 2 a ]

Alternative approaches

§ o- == £ \
Low
Transpiration draws . L. .
water from the leat. Classic Water Use Efficiency Hypothesis (WUEH):
=
L
© dA OF
Q n
ool | — —_
Sl s 095 095
C O
% — e.g. CABLE, CLM5
Q. C
o
| O
Cohesion and adhesion o
draw water up the xylem. ‘;"
) A
High[ |

Negative water potential
draws water into the root.



LU Alternative approaches

Transpiration draws
water from the leaf.

Classic Water Use Efficiency Hypothesis (WUEH):
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Droughted forested fluxnet sites
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Calibrating B is not a viable solution

Calibrated soil moisture stress factor at Roccarespampani in 2003
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C-H,O optimisation as an alternative

Drought at Roccarespampani in 2003
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C-H,O optimisation as an alternative

Drought at Roccarespampani in 2003
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Plants can follow a profit maximization approach!

Drought at Roccarespampani in 2003

Aug Nov Feb May Aug Nov

median traits of genus T H20 stress sensitivity, T kmnax
T T H20 stress sensitivity, T T kmax — | H20 stress sensitivity, ! kmax



Plants can follow a profit maximization approach!

Drought at Roccarespampani in 2003
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But it might not be sufficient...

Drought at Espirra in 2004
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Future directions

Can we capture the response of wet
ecosystems to drought?

What about grasses and their recovery?

Can carbon gain be invested in rooting
depth and/or dynamic LAI?

Can hydraulic cost be used to infer plant
mortality?
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Vulnerability curves
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Fig. 1. (A) Stomatal conductance response as a function of leaf water potential [5(y..p)] with a Weibull-like functional form. (B) Observed stomatal con-
ductance response (normalized to species-level maximum) as a function of leaf water potential (MPa) from 70 woody plant species from around the globe
Reprinted with permission from ref. 82.

Wolf et al., PNAS, 2016



C-H,O optimization
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